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Rapid protein-structure determination relies greatly on soft-

ware that can automatically build a protein model into an

experimental electron-density map. In favorable circum-

stances, various software systems are capable of building over

90% of the ®nal model. However, completeness falls off

rapidly with the resolution of the diffraction data. Manual

completion of these partial models is usually feasible, but is

time-consuming and prone to subjective interpretation.

Except for the N- and C-termini of the chain, the end points

of each missing fragment are known from the initial model.

Hence, ®tting fragments reduces to an inverse-kinematics

problem. A method has been developed that combines fast

inverse-kinematics algorithms with a real-space torsion-angle

re®nement procedure in a two-stage approach to ®t missing

main-chain fragments into the electron density between two

anchor points. The ®rst stage samples a large number of

closing conformations, guided by the electron density. These

candidates are ranked according to density ®t. In a subsequent

re®nement stage, optimization steps are projected onto a

carefully chosen subspace of conformation space to preserve

rigid geometry and closure. Experimental results show that

®tted fragments are in excellent agreement with the ®nal

re®ned structure for lengths of up to 12±15 residues in areas of

weak or ambiguous electron density, even at medium to low

resolution.
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1. Introduction

The Protein Structure Initiative (PSI), a National Institute of

General Medical Sciences program in the US, aims to reduce

the time and associated costs of determining a three-

dimensional protein structure. Stimulated in part by funding

initiatives such as the PSI, the experimental and computa-

tional methods used for X-ray structure determination have

been greatly improved. Many of the sample-preparation steps

including protein expression, puri®cation and crystallization

have been automated and turned into large-scale production

facilities (Lesley et al., 2002). Various third-generation

synchrotrons now feature highly automated protein

crystallography beamlines and allow collection of a complete

X-ray diffraction data set in a matter of minutes (Walsh et al.,

1999; Cohen et al., 2002; van den Bedem et al., 2003). Such

developments require an ever-increasing rate at which

macromolecular structures need to be solved. Further auto-

mation of all computational aspects of structure determination

is therefore highly desirable to avoid it becoming a rate-

limiting step (Burley et al., 1999; Adams et al., 2003).



There have also been tremendous advances in automated

model-building methods. Various software systems are now

capable of building a protein model into an electron-density

map without human intervention (Ioerger & Sacchettini, 2003;

Levitt, 2001; Perrakis et al., 1999; Terwilliger, 2003). The

PHENIX project (Adams et al., 2002) aims to automate

structure solution from reduced intensity data to a re®ned

model, even at medium to low resolution. Indeed, in favorable

cases it is now possible to proceed from diffraction data to an

initial model of a new protein structure in a few hours.

However, the degree of completeness of these initial

models, i.e. the fraction of atoms or residues correctly placed,

varies widely depending on the quality of the experimental

data and rarely reaches 100%. Determining the atomic co-

ordinates of mobile fragments in the molecule, for instance,

remains a challenge. Such fragments may lead to disorder in

the crystal, rendering interpretation of the resulting electron

density dif®cult. Manually completing a partial protein model,

i.e. building the missing residues, is a time-consuming and

labor-intensive process which can take a few weeks of work

depending on the resolution and size of the structure. Thus,

this step still presents a substantial bottleneck to any high-

throughput structure-determination effort.

In practice, a large portion of the molecule has often been

resolved and the N- and C-termini of a fragment in the initial

model are known. The missing main-chain fragment can be

modeled as a kinematic chain, with rigid groups of atoms as

links and rotatable bonds as joints. Fitting a fragment between

two anchor points can thus be interpreted as an inverse-

kinematics (IK) problem (Craig, 1989; Manocha & Zhu, 1994;

Manocha et al., 1995): given the position and orientation of the

end point of a kinematic chain, can the corresponding values

of the joint angles be determined? Exploiting this observation,

we have combined inverse-kinematics algorithms with a real-

space torsion-angle re®nement procedure in a two-stage

approach to ®t a missing main-chain fragment into a protein

model.

In a test set of 103 structurally diverse fragments within one

protein, the algorithm closed gaps of 12 residues in length to

within, on average, 0.52 AÊ all-atom root-mean-square devia-

tion (aaRMSD1) from the ®nal re®ned structure at a resolu-

tion of 2.8 AÊ . The algorithm has also been tested and used to

aid protein-model completion in areas of weak or ambiguous

experimental electron density, where an initial model was built

using ARP/wARP (Perrakis et al., 1999) or RESOLVE

(Terwilliger, 2003). At a resolution of 2.4 AÊ , it closed a ten-

residue gap to within 0.43 AÊ aaRMSD of the ®nal re®ned

structure. In another case, a 14-residue gap in a 51% complete

model built at 2.6 AÊ was closed to within 0.9 AÊ aaRMSD.

Furthermore, our method was used to correctly identify and

build multiple alternative main-chain conformations at a

resolution of 1.8 AÊ .

2. Background
A variety of techniques have found successful application and

widespread use in automated interpretation of electron-

density maps. The program ARP/wARP, for instance, iterates

interpretation of the electron-density map, model building and

re®nement using a hybrid model consisting of a conventional

protein model and a set of free atoms (Morris et al., 2002). The

program TEXTAL (Ioerger & Sacchettini, 2003) employs

local pattern-recognition techniques to select regions from a

database of previously determined structures, similar to those

in the unknown structure. Some automated systems, targeting

lower resolution levels, notably RESOLVE and MAID

(Levitt, 2001), start by identifying larger secondary-structure

elements using sophisticated template-matching techniques

and then connect these `®ts' through loop regions.

Relying on unambiguous experimental data and elementary

stereochemical constraints, areas of weak or ambiguous elec-

tron density remain a challenge for these approaches. For

instance, exposed mobile-loop regions typically have poorly

resolved side-chain density or show discontinuous main-chain

density even at low contour levels. Patterns in the density may

go unnoticed in template-matching techniques for a variety of

reasons. The electron density may exhibit multimodal

disorder, in which the protein main chain adopts two or more

distinct conformations for a number of contiguous residues

(Wilson & Brunger, 2000). Nevertheless, at high resolution

these programs may provide over 90% of the protein main

chain of the ®nal model (Badger, 2003). At resolution levels

beyond 2.3 AÊ , the initial model resulting from these programs

is typically a gapped polypeptide chain and only about two-

thirds completeness is attained in the range 2.3 � d < 2.9 AÊ . In

the majority of cases, the amino-acid sequence is correctly

assigned, so gap lengths and the identity of their residues are

known.

In practice, to complete a model the crystallographer

manually builds the missing residues onto the partially

completed structure using an interactive graphics program.

These programs, such as the X-BUILD package in QUANTA,

InsightII (both from Accelrys Inc.) and O (Jones & Kjeld-

gaard, 1997) provide a variety of semi-automated tools and

techniques to assist the model-building and re®nement steps.

In O, database fragments straddling a gap can be re®ned

against the density using torsion-angle re®nement based on

grid summation (Jones et al., 1991). Old®eld (2001) developed

a method combining a random search of conformation space

with grid- and gradient-based re®nement techniques to close

loops. InsightII employs the random-tweak algorithm (Fine et

al., 1986; Shenkin et al., 1987) to build fragments.

In robotics, it is well known that for manipulators in a three-

dimensional workspace there are a ®nite number of solutions

to the IK problem when the number of degrees of freedom

(DoFs) does not exceed six. In the case of a serial manipulator

with six revolute joints, which is the most relevant to protein

fragments, an analytic solution exists and the number of

unique solutions is at most 16 (Raghavan & Roth, 1989).

Go� and Scheraga were the ®rst to study analytical loop

closure, limited to six DoFs, in the context of macromolecules
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1 The algorithm ®ts a main chain consisting of {N, C�, C�, C, O} atoms.
aaRMSD is the square root of the averaged squared distances between all
corresponding atoms. It is calculated after the loops are optimally aligned in
three dimensions.



(Go� & Scheraga, 1970). Practical applications of their method

and subsequent improvements (Wedemeyer & Scheraga,

1999) are limited; when restricting the DoFs to ',  angles, the

loop length can not exceed three residues. Recently, this

limitation was overcome by extending the domain to any

three, not necessarily consecutive, residues with arbitrary

geometry (Coutsias et al., 2004).

In the general case of N > 6 dihedral angles, the chain has

redundant DoFs; the inverse-kinematics system of equations is

underdetermined. Rather than solving directly for the di-

hedral angles, numerical methods are employed to sample

conformational space.

Search methods sample from a set of conformational

parameters and include sampling biased by the database

distribution of the '/ -angle pairs (Moult & James, 1986),

uniform conformational search (Bruccoleri & Karplus, 1987),

sampling from a discrete set of '/ pairs (Deane & Blundell,

2000; DePristo et al., 2003) or sampling from a small library of

short representative fragments (Kolodny et al., 2005).

Extracting candidate fragments from the PDB satisfying

conditions on length and geometry started with Jones &

Thirup (1986) and was further developed by Fidelis et al.

(1994), van Vlijmen & Karplus (1997) and Du et al. (2003).

Various methods exist for optimization of candidate loops,

such as molecular dynamics (Bruccoleri & Karplus, 1987; Fiser

et al., 2000; Zheng et al., 1992) and Monte Carlo (Abagyan &

Totrov, 1994; Collura et al., 1993) simulations.

Another class of methods iteratively solves the inverse-

kinematics system of equations. The aforementioned random-

tweak method closes a loop by iteratively changing all its DoFs

at once until the desired distances between the two termini are

reached. It employs the Jacobian of these distances with

respect to torsional DoFs to calculate the DoF changes. The

cyclic coordinate descent (CCD) algorithm (Canutescu &

Dunbrack, 2003; Wang & Chen, 1991) adjusts one DoF at a

time along the chain to move the ®nal segment of the loop

toward the target residue. It is free from singularities and

allows constraints on any of the DoFs.

3. Methods

The objective is to automatically ®t a missing protein fragment

in between two anchor residues, satisfying electron-density

constraints. The algorithm assumes rigid peptide geometry;

residue-dependent values for bond lengths and bond angles

are derived from small-molecule data (Engh & Huber, 1991).

To limit the number of DoFs (and thus computational

complexity) in the current implementation, side chains are

truncated at the C� atom.

The algorithm proceeds in two stages: candidate generation

and re®nement. In the ®rst stage, 1000 candidate gap-closing

fragments are built using the CCD algorithm, while

putting additional constraints on the DoFs to take electron

density and collision avoidance into account.2 Next, a cross-

correlation density score r =
P
�o �c�P �o2 P

�c2�ÿ1=2 is

calculated for these candidates, where �o and �c denote the

normalized observed and calculated density, respectively. The

99th percentile (with a maximum of six fragments) is passed

on to stage two, which re®nes atomic coordinates by mini-

mizing a standard real-space target function (Diamond, 1971;

Chapman, 1995; Korostelev et al., 2002). An optimization

protocol based on simulated annealing (SA; Kirkpatrick et al.,

1983) and Monte Carlo minimization (MCM; Li & Scheraga,

1987) uses the redundant DoFs of the fragment to search for

the global minimum of the target function while maintaining

ideal peptide geometry and loop closure. Each fragment is

subjected to four SA re®nement cycles, the two top-scoring

fragments of which are retained.

The input to the algorithm is given by the electron density,

in most cases a 2mFo ÿ DFc map (Read, 1986), the partial

model and the amino-acid sequence. The program outputs all

12 fragments it retains. It also writes a log ®le containing the

full cross-correlation electron-density score for each fragment.

Final conformations will need to be re®ned using standard

maximum-likelihood re®nement programs such as CNS

(BruÈ nger et al., 1998) or REFMAC (Murshudov et al., 1997).

The implementation of the algorithm uses the following soft-

ware packages: Clipper (Cowtan, 2004), the CCP4 Coordinate

Library (Krissinel, 2004) and the exact IK solver of Coutsias et

al. (2004).

3.1. Stage 1: generation

Residues ¯anking the gap in the partial model are denoted

N- and C-stationary anchors. The algorithm starts by

constructing a protein fragment C of length L in a random

initial conformation (x3.1.1), where residue 0 is a copy of the

N-stationary anchor and residue L ÿ 1 is a copy of the

C-stationary anchor. This chain is attached to either the N- or

C-anchor, thus determining the closing direction. The

remaining terminal residue in C is called the mobile anchor.

Upon starting the procedure, the position of the mobile

anchor will not coincide with the position of the stationary

anchor. The algorithm iteratively adjusts each backbone

dihedral angle in turn to satisfy a closure constraint, mini-

mizing the distance between the three backbone atoms of the

mobile anchor and the corresponding atoms of the stationary

anchor as follows. Working its way down the chain, at residue i

the CCD algorithm proposes a dihedral angle 'i that mini-

mizes the distance between the mobile anchor and stationary

anchor. Based on 'i, it also proposes a minimizing angle  i. (In

our implementation, we change each DoF in turn, although

this is not strictly necessary.) Thus, a proposed angle pair

�';  �pi is obtained. To guide the fragment, a heuristic

electron-density constraint has been added to the CCD algo-

rithm. For �'; �pi , denote by Ai the set of atoms {C
�
i , Ci, Oi,

Ni+1, C�
i�1} subject to change by this angle pair, but not affected

by changes in angle pair i + 1. Electron-density scores are

calculated for trial conformations in a square neighborhood

U�'; �p
i

about �'; �pi . A simple and fast local scoring function

is used: the sum of electron-density values at atom-center
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2 In future releases, the number of candidate fragments will depend on the
length of the fragment and the quality of the electron density.



positions of Ai. The angle pair (',  )i is then set to the trial

position with maximum score. At this point, overlaps of van

der Waals surfaces of atoms in Ai and the rest of the protein

structure are determined. If no overlaps occur, the new (',  )i

pair is accepted, otherwise the pair is accepted with a prob-

ability inversely related to the amount of overlap. The size of

U��; �p is reduced linearly in the number of CCD iterations to

allow closure of the chain.

It was found that longer fragments ®t the electron density

better when built from both the N- and C-stationary anchors

to meet in the middle. Fragments of nine or more residues are

therefore split in the middle and each half-chain is attached to

its corresponding anchor. The terminal residue of each half-

chain alternates between acting as stationary anchor and

mobile anchor in subsequent iterations.

Each initial conformation is allowed 2000 iterations for

closure, up to a preset tolerance distance dclosed. Chains that do

not close are discarded.

3.1.1. Random initial conformations. For each initial

conformation, !i is considered to be a ®xed N(180, 5.8)

random variable for all i. Half of the initial conformations are

obtained by adjusting each (',  )i in turn to optimize agree-

ment with the electon density while stereochemical constraints

are observed. The remaining 500 initial conformations

are purely random and obtained from sampling (',  )i,

i = 0 . . . L ÿ 1 angle pairs from PDB-derived distributions.

Finite mixtures of bivariate normal distributions were there-

fore ®tted to frequencies calculated from the Top500 database

(Lovell et al., 2003) of non-redundant protein structures using

the program EMMIX (McLachlan et al., 1999). We obtained

distributions for each of the 20 amino acids and an additional

distribution for residues immediately preceding proline in the

amino-acid sequence. The angles '0 and  Lÿ1 remain ®xed at

their initial values.

3.2. Stage 2: refinement

A candidate fragment is re®ned by minimizing the least-

squares residuals between the observed density �o and the

density calculated from the model �c in some volume V

around the fragment,

T�q� � P
gi2V

�S�o�gi� � kÿ �c�gi��2: �1�

The calculated density at each grid point is a sum of contri-

butions of all atoms whose center lies within a cutoff distance

from this point. The calculated density contribution of an atom

is a sum of isotropic three-dimensional Gaussians (Waasmaier

& Kirfel, 1995). The factors S and k scale �o to �c and are

computed once at initialization using the partial model.

3.2.1. Optimization with closure constraints. The redun-

dant DoFs de®ne a subspace of conformation space termed

the self-motion manifold. Motions on this manifold do not

in¯uence the position and orientation of the end point and

thus can be used to move the fragment towards a minimum of

the target function (Burdick, 1989; Khatib, 1987). Since this

manifold may be very complex, these motions are in general

dif®cult to calculate. We therefore use a local linear approx-

imation of the self-motion manifold; the null-space of the

Jacobian matrix of the fragment (Craig, 1989). For an n-DoF

fragment in R3 at conformation q, the Jacobian J(q) is a 6 � n

matrix satisfying the equation

_x � J�q� _q: �2�

Thus, J(q) = df(q)/d(q), where f(q) is the fragment's forward-

kinematics function mapping DoF parameters to end-point

position and orientation. The rank of the Jacobian in R3 is at

most 6 and thus the dimensionality of its null space is at least

n ÿ 6. An instantaneous change in the conformation corre-

sponding to a desired small change in end-point position is

calculated by inverting (2). We obtain

_q � Jy�q�_x� N�q�NT�q�y; �3�

where Jy is the pseudo-inverse of the Jacobian and N(q) is an

orthonormal basis for the null space. The null space can now

be used to optimize the target function without affecting the

position of the end point. The instantaneous change in posi-

tion and orientation of the end point, _x, is set to zero and y is

taken to be the gradient vector of the target function.

Projecting y onto the null space of the Jacobian produces a

motion that minimizes the target function without disturbing

closure.

3.2.2. Implementation details. The null space of the Jaco-

bian is obtained from a singular-value decomposition of the

Jacobian matrix. The null-space basis N(q) is the set of right

singular vectors corresponding to vanishing singular values.

We derived an analytical expression for the gradient of the

target function with respect to the torsional DoFs of the loop.

It is calculated using a recursive method (Abe et al., 1984)

linear in the number of DoFs of the fragment.

A gradient-descent search for the minimum of the target

function is prone to become stuck in local minima. The MCM

approach is well known for its ability to overcome this

problem. At each step, a large random move in conformation

space is proposed, the new conformation is then minimized by

gradient descent and the resulting local minimum is accepted

or rejected using the Metropolis criterion (Metropolis et al.,

1953). Minimization increases the acceptance probability of

the trial move, enabling the search to make more progress.
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Figure 1
Pseudo-code for re®nement-search protocol.



This comes at the cost of increasing the time of each simula-

tion step.

Two methods are used for generating random moves for

MCM. The ®rst is to take a step in a random direction in the

null space (Yakey et al., 2001). Before performing minimiza-

tion, we make sure the closure tolerance has not been

exceeded. A second method for generating random steps is an

exact IK solver (Coutsias et al., 2004). One of the solutions is

chosen at random as the proposed move. The use of an exact

solver allows jumping between unconnected parts of the self-

motion manifold. The closure constraint is relaxed during the

re®nement stage and a maximum RMSD of 0.5 AÊ is allowed at

both ends of the loop. By relaxing closure, larger steps can be

taken in the null space of the Jacobian.

The re®nement protocol is composed of three nested loops,

see Fig. 1. The inner loop performs an MCM search by using

the two methods described above for generating random trial

moves. The middle loop performs SA by gradually reducing

the pseudo-temperature of the MCM search. The outer loop

enhances the SA protocol by simulating restarts each time at a

lower starting pseudo-temperature. The magnitude of

attempted random null-space moves is reduced together with

the current pseudo-temperature of the simulation to increase

the chance that the random moves will be accepted.

Decreasing levels of smoothing are applied to the density after

each restart. The density map is smoothed by convolving it

with an isotropic three-dimensional Gaussian kernel.

4. Results and discussion

The performance of the algorithm was ®rst evaluated on a test

set of structurally diverse fragments at various truncated

resolution levels. Next, we tested its ability to fully complete

initial protein models at comparable resolution levels by

closing all the gaps in three initial models, this time using `real'

data. Furthermore, we evaluated the algorithm's ability to

identify alternative conformations in a disordered region.

4.1. Performance at various resolutions, fragment lengths and
their secondary structure

4.1.1. TM1621. A set of 103 structurally diverse fragments

was obtained by creating gaps of length four, eight, 12 and 15

at each even-numbered residue of a test structure, the protein

TM1621 (PDB code 1o1z; SCOP classi®cation �/�). TM1621

consists of one chain, with 34% of the residues in ten �-helices
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Figure 2
The aaRMSD distribution of 103 fragments with lengths of (a) four, (b) eight, (c) 12 and (d) 15 residues of TM1621 at a resolution of 2.0 AÊ . A total of 9%
of 12-residue and 9% of 15-residue fragments have an aaRMSD > 1.0 AÊ .



and 19% in nine �-sheets. Diffraction data for this 234-residue

protein structure had been collected at a resolution of 1.6 AÊ .

To evaluate the performance at various resolution levels, three

2mFo ÿ DFc electron-density maps were calculated at 2.0, 2.5

and 2.8 AÊ , using structure factors obtained from the PDB. For

each gap, the fragment with the highest cross-correlation

electron-density score was selected from the 12 fragments

output by the program. Since low-resolution electron-density

maps were obtained by truncation, the RMSDs in this section

are not typical for their resolution levels.

At a resolution of 2.0 AÊ , the algorithm successfully closed

all 103 gaps of length four to within 1.0 AÊ and all length eight

gaps to within 0.85 AÊ , as shown in Fig. 2. Wider gaps are more

dif®cult to close; a total of nine 12-residue and nine 15-residue

fragments were found to have an aaRMSD greater than 1.0 AÊ .

To evaluate the effect of secondary structure on aaRMSD,

all 12- and 15-residue fragments were classi®ed as helix, strand

or `other'. A fragment is considered a helix or strand only if at

least two-thirds of its residues are classi®ed as such. A total of

14 12-residue fragments and eight 15-residue fragments met

our criteria for helices. Three 12-residue fragments and no

15-residue fragments were classi®ed as strands. The maximum

aaRMSD for the 12-residue strands over all resolutions was

0.3 AÊ . 4% of non-helical 12-residue fragments were found to

have an aaRMSD > 1.0 AÊ , compared with 36% of helical

fragments. For 15-residue fragments, these numbers are 4 and

63%, respectively.

At a resolution of 2.5 AÊ , all gaps of length four and eight

were closed to within 1.0 AÊ aaRMSD and 0.85 AÊ aaRMSD,

respectively, whereas four 12-residue fragments and 12 15-

residue fragments deviated by more than 1.0 AÊ aaRMSD. The

results are depicted in Fig. 3. 1% of non-helical 12-residue

fragments were found to have an aaRMSD > 1.0 AÊ , compared

with 21% of helical fragments. For 15-residue fragments, these

numbers are 7 and 63%, respectively.
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Table 1
Median (~x) and mean (�x) aaRMSD of ®tted fragments to corresponding
regions in TM1621 at resolutions of 2.0, 2.5 and 2.8 AÊ and the percentage
of fragments deviating by more than 1.0 AÊ (p).

2.0 AÊ 2.5 AÊ 2.8 AÊ

Length ~x �x p ~x �x p ~x �x p

4 0.13 0.14 0 0.18 0.19 0 0.31 0.32 0
8 0.16 0.18 0 0.23 0.23 0 0.33 0.36 0
12 0.28 0.51 9 0.34 0.41 4 0.41 0.52 4
15 0.33 0.53 9 0.43 0.63 12 0.49 0.76 17

Figure 3
The aaRMSD distribution of 103 fragments with lengths of (a) four, (b) eight, (c) 12 and (d) 15 residues of TM1621 at a resolution of 2.5 AÊ . A total of 4%
of fragments of length 12 and 12% of fragments of length 15 have an aaRMSD > 1.0 AÊ .



At a resolution of 2.8 AÊ , all gaps of length four and eight

closed to within 1.05 and 0.75 AÊ aaRMSD, respectively. Four

12-residue fragments and 18 15-residue fragments deviated by

more than 1.0 AÊ aaRMSD. The results are depicted in Fig. 4.
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Figure 4
The aaRMSD distribution of 103 fragments with lengths of (a) four, (b) eight, (c) 12 and (d) 15 residues of TM1621 at a resolution of 2.8 AÊ . A total of 4%
of fragments of length 12 and 17% of fragments of length 15 have an aaRMSD > 1.0 AÊ .

Table 2
Average run times (min) on a 2.66 GHz Intel P4 Xeon at various
fragment lengths and resolution levels.

The average is calculated over 103 fragments.

Resolution (AÊ )

Length 2.0 2.5 2.8

4 40 29 28
8 92 63 58
12 134 82 73
15 178 105 95

Table 3
Median �~x� and mean ��x� aaRMSD of 174 ®tted fragments to
corresponding regions in TM0423 at resolutions of 2.0, 2.5 and 2.8 AÊ

and the percentage of fragments deviating by more than 1.0 AÊ (p).

2.0 AÊ 2.5 AÊ 2.8 AÊ

Length ~x �x p ~x �x p ~x �x p

4 0.18 0.19 0 0.24 0.25 0 0.32 0.32 0
8 0.20 0.22 0 0.28 0.29 0 0.35 0.38 0
12 0.29 0.55 26 0.33 0.50 19 0.40 0.56 19
15 0.34 0.96 38 0.43 0.92 29 0.52 1.19 29

Figure 5
Percentage of fragments closed to within 1.0 AÊ aaRMSD of the native
structure by resolution level.



2% of non-helical 12-residue fragments were found to have an

aaRMSD > 1.0 AÊ , compared with 14% of helical fragments.

For 15-residue fragments, these numbers are 12 and 88%,

respectively.

Table 1 summarizes the performance at three resolution

levels.

Fig. 5 visually summarizes the performance of the algorithm

at the three resolution levels. The histogram depicts the

distribution of fragments closed to within 1.0 AÊ aaRMSD of

the native structure at various fragment lengths by resolution

level.

4.1.2. Run times. The run time of the

algorithm depends on the length of the

fragment to be ®tted, as well as on the

resolution of the diffraction data. Run times

vary from about 30 min for short fragments

to just under 3 h for the longest fragments at

high resolution. Table 2 summarizes average

run times calculated while generating the

103 fragments used in this section. All tests

were performed on a 2.66 GHz Intel P4

Xeon running RedHat 9. The source code

was compiled using gcc 3.2.

It is to be expected that targeting areas of

weak or ambiguous electron density, where

standard model-building algorithms fail, is

computationally expensive. However,

average execution times may be reduced by

alternating generation and re®nement

stages together with the introduction of a

stopping criteria based on a variety of local

scores such as density ®t and Ramachandran

scores.

4.1.3. TM0423. An equivalent analysis on

TM0423 (376 residues; PDB code 1kq3;

SCOP classi®cation multi-domain �/�,

multi-helical), a protein with a helical

domain, gives similar results (see Table 3).

TM0423 consists of one chain, with 46% of

the residues in 16 helices and 11% in eight

�-sheets. The longest helix has length 17 and

if a single glycine classi®ed as a hydrogen-

bonded turn is included its length is 26.

Clearly, the algorithm performs more

modestly when ®tting longer fragments. In

addition to an increasing median aaRMSD,

a larger proportion of fragments deviate by

more than 1.0 AÊ as fragment length

increases, particularly when a large number

of residues are in �-helical conformation.

The latter effect arises from the nature of

the CCD algorithm; choosing distance-

minimizing dihedral angles at every itera-

tion naturally leads to an extended confor-

mation. It has been observed in previous

studies that accurately modeling secondary-

structure elements may require specialized

sampling algorithms (Jacobson et al., 2004). Our current

implementation lacks such targeted approaches, yet gives

acceptable performance for fragments up to length 12 across

all resolutions. For instance, at a resolution of 2.5 AÊ it correctly

builds two out of every three fragments containing eight or

more residues in a helical conformation.

Interestingly, lowering the resolution of the data only mildly

affects performance (see Fig. 5). We believe that this is the

true strength of the algorithm: information from electron

density which is at the limit of being interpretable is

research papers

Acta Cryst. (2005). D61, 2±13 van den Bedem et al. � Real-space protein-model completion 9

Figure 6
An example illustrating the convergence radius of the re®nement stage. Residues A168±A181
of TM1621 are shown in green. (a) The output of the ®rst stage shown in cyan. The aaRMSD to
the native structure is 2.72 AÊ . (b) The re®ned fragment corresponding to (a) shown in magenta.
The aaRMSD improved by 2.4 AÊ to 0.31 AÊ . A closed conformation is maintained throughout
re®nement. The 2.5 AÊ 2mFo ÿ DFc electron-density map is contoured at 1.5�.

Figure 7
Residues 89±99 of TM1586. The fragment inserted into the model is shown in cyan and the
corresponding ®nal re®ned fragment in green. The aaRMSD between the two fragments is
1.01 AÊ . The 2mFoÿDFc electron-density map is shown contoured at 0.8� and is discontinuous
around Ala90.



augmented by a closing constraint. The performance of the

second stage in the algorithm also re¯ects this insight. For

instance, in x4.1.1 it was found that 12-residue fragments have

a mean (median) aaRMSD of 0.41 AÊ (0.34 AÊ ) to the native

structure at a resolution of 2.5 AÊ . Their corresponding stage-

one fragments have mean and median distances of 1.38 and

1.23 AÊ , respectively. In fact, for one in ®ve fragments, the

second stage lowered the aaRMSD by more than 1.5 AÊ , with a

few cases even exceeding 2.5 AÊ (see Fig. 6).

4.2. Missing fragments

In this section, we present three examples of protein-model

completion by inserting main-chain fragments into a gapped

initial model at high and medium-to-low resolution. Rather

than closing a few selected gaps, we aimed to fully complete

each model. Thus, we calculated all missing fragments of

length 15 residues or less in each model.

In one instance, the hypothetical protein TM1586, the

algorithm was actively used to complete the model and

detailed results will appear in a separate publication. The

remaining two structures had been completed and re®ned

prior to testing the algorithm. All initial models were obtained

from common crystallographic model-building programs.

It was found that residues ¯anking a gap in partial models

do not always ®t the density correctly. In these cases, the gap

was widened by trimming back one or more residues at the N

and/or C end of the gap until the new anchors ®t the density

satisfactorily. Furthermore, missing fragments of length less

than four are extended to length four in this section, again by

trimming back residues at both ends of the gap.

The electron-density score of generated fragments and

RMSD to the ®nal re®ned structure cannot expected to be

perfectly correlated in areas of poor density. In an extreme

case, it may happen that conformations attain a higher score

by jumping over to a neighboring empty stretch of density (a

�-sheet, for instance) for a few residues. In this section, in

addition to the aaRMSD of the best scoring fragment, we

therefore report the lowest achieved aaRMSD among the 12

fragments output by the program.

4.2.1. TM1586 at 2.0 AÊ . An initial model for the 206-

residue hypothetical protein TM1586 was produced using

Xsolve, a fully automated crystallographic data-processing

and structure-solution software suite under development at

the JCSG. Xsolve utilizes standard crystallographic software

packages to obtain a protein model.

An experimental electron-density map was obtained from

MAD data collected at 2.0 AÊ with the program SOLVE v2.03

(Terwilliger & Berendzen, 1999). The initial model, obtained

with RESOLVE v2.06, showed gaps between residues 86±98,

107±117 and 142±150. Furthermore, 66 residues were missing

at the N-terminus of the molecule. Overall completeness was

reported to be 51%. After widening the gap between residues

142±150 by one residue at each end, it was easily closed to

within 0.5 AÊ aaRMSD. The gaps between residues 86±98 and

107±117 proved to be more dif®cult; the density was too weak

for the crystallographer to decide which fragment among the

12 candidates ®tted the electron density best.

The extended RESOLVE model was then combined with

an ARP/wARP model and after various rounds of phase

improvements the N-terminus was largely recovered. The map

was further slightly improved using a combination of

SHELXD (Schneider & Sheldrick, 2002) and autoSHARP (de

La Fortelle & Bricogne, 1997; Vonrhein et al., 2005). The

model still showed gaps between residues 13±23, 49±52, 89±99

and 105±113. These missing fragments were all located on one

face of the molecule and the density remained weak in this

area. Three residues at the C-terminus of the ®rst gap did not

adequately ®t the density and the gap was widened to span

residues 13±27. Gap 49±52 was widened to 47±53 and gap 105±

113 was extended by one residue at the C-terminus. After

generating these fragments and further manual re®nement,

the resulting structure was subsequently re®ned with

REFMAC5. Table 4 shows the aaRMSD of fragments to this

®nal re®ned model.

The density score and the aaRMSD are poorly correlated,

re¯ecting the weak density in the area of the missing frag-

ments. Even though the ®rst fragment has a fairly high

aaRMSD, it still provided a good starting point for manual

re®nement. Fig. 7 shows residues 89±99 of the ®nal re®ned

structure together with the best fragment that was generated.

Note that the main-chain density is discontinuous at the

displayed contour level of 0.8� and that side-chain density is

poorly de®ned.
4.2.2. TM1742 at 2.4 AÊ . MAD data for the 271-residue

putative Nagd protein TM1742 (PDB code 1vjr) was collected

at a resolution of 2.4 AÊ . An initial electron-density map of

good quality was obtained using the program SOLVE v.2.03

(Terwilliger & Berendzen, 1999) at a resolution of 2.5 AÊ .

Iterative model building using Terwilliger's resolve_build
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Table 4
RMSD of ®tted fragments in TM1586 and corresponding regions in the
®nal re®ned structure.

Gap Length
Secondary
structure

aaRMSD (AÊ )
(top score)

aaRMSD (AÊ )
(lowest)

13±27 13 HHHHHHHHH�B���B 2.43 2.39
47±53 5 �SS���� 1.08 0.86
89±99 9 HHHHHTTEEEE 1.39 1.01
105±114 8 �BS������� 1.03 0.75
141±151 9 HT�GGGGG� 0.46 0.43

Table 5
RMSD of ®tted fragments in TM1742 and corresponding regions in the
®nal re®ned structure obtained from the PDB.

Gap Length
Secondary
structure

aaRMSD (AÊ )
(top score)

aaRMSD (AÊ )
(lowest)

17±25 7 ETTEE�T 0.72 0.66
56±62 5 HHHHT 0.78 0.78
126±132 5 HHHHH 0.36 0.36
146±148 1 � 0.44 0.40
191±202 10 HHHHHT��GG 0.43 0.43
228±233 4 SSS� 0.22 0.22



script resulted in an 88% complete model, with gaps between

residues 17±25, 56±62, 129±132, 146±148 and 229±231.

Furthermore, the region between residues 191 and 202 had

been built incorrectly. The RESOLVE model was indepen-

dently completed and re®ned. Table 5 summarizes the

aaRMSD of top-scoring fragments built with our algorithm to

the ®nal re®ned structure.

4.2.3. TM0542 at 2.6 AÊ . MAD data for the 376-residue

protein TM0542 (malate oxidoreductase) was collected at a

resolution of 3.0 AÊ and a native data set was obtained at 2.6 AÊ .

An electron-density map was calculated with phase extension

using the program SOLVE. Iterative model building using

SOLVE revealed that the unit cell contains four NCS-related

molecules. Molecule A was the most complete of this set of

four with 56% of residues placed and gaps between residues

12±89, 134±142, 212±227, 256±266, 272±285 and 318±324. This

RESOLVE starting model was independently manually

completed and re®ned. The re®ned model was used to

calculate RMSDs for our automatically generated fragments.

The algorithm successfully closed all gaps up to 15 residues

in length in the protein. Table 6 summarizes the results.

Fitting a main-chain fragment into the density is rather

sensitive to residues being ¯ipped along the chain. This

problem is exacerbated by the fact that exposed loop regions

typically have poorly resolved side chains in the electron

density. Fig. 8 shows an example of a fragment where two

consecutive residues are ¯ipped. While the aaRMSD is rela-

tively high at 0.9 AÊ for this fragment, the C� trace is in

excellent agreement with the manually built fragment. The

¯ipped residues are easy to identify and correct for a trained

crystallographer.

4.3. Identifying alternative main-chain conformations

Binding of ligands to proteins and protein±protein inter-

actions are typically facilitated by mobile regions in the

macromolecule. Such ¯exible fragments sometimes crystallize

in multimodal disordered substates, in which the main chain

adopts two or more distinct conformations for a number of

contiguous residues. It is generally dif®cult to recognize

features in the resulting areas of overlapping density, even for

a trained crystallographer. Here, we show that the techniques

introduced in this paper can be extended to support identi®-

cation and modeling of multiple distinct conformations, even

at a resolution of 1.8 AÊ .

A model for the 398-residue protein TM0755 (PDB code

1vme) was built from a 1.8 AÊ MAD data set using ARP/

wARP. The structure was completed manually, apart from a

short fragment around residue A320 and the same fragment

around B320. The electron density from residues A317±A323

indicated that this fragment was bimodally disordered.

Furthermore, a structurally similar dioxygen-reduction

enzyme, rubredoxin oxygen:oxidoreductase (PDB code 1e5d),

binds a ¯avin mononucleotide at the corresponding residues.

The absence of this cofactor in TM0755 allows the main chain

to adopt other energetically favored conformations. A

detailed analysis of TM0755 will appear in a separate forth-

coming publication.

While one conformation was clearly visible in the electron

density, the main-chain trace of the alternative conformation

was much less obvious. From residue A320 to A323, the

density was particularly ambiguous; the alternative confor-

mation was dif®cult to identify and not modeled. The

algorithm was slightly modi®ed to model the fragment from

residue A317 to A323; half-occupancy was hard-coded and

density smoothing was disabled to narrow the radius of

convergence of the re®nement stage. Runs at four different

lengths were attempted. The N-anchor was kept ®xed at

SerA316 and the C-anchor ranged from AlaA320 to HisA323.

In the ®nal run, four out of the ®nal 12 fragments adopted

conformation 1, another three adopted conformation 2 and

the remaining ®ve fragments did not ®t the density mean-

ingfully. The aaRMSDs between these fragments and the ®nal

re®ned model are 0.42 AÊ for conformation 1 and 0.29 AÊ for

conformation 2. Fig. 9 depicts the ®nal re®ned model of the

two alternative conformations for residues A317±A321 in an

omit electron-density map. In conformation 1, the terminal

OH group of TyrA318 is engaged in hydrogen bonds with

GluB29 and LysB336. GluA319 is hydrogen bonded to a water

molecule and to LysB336. Further stability is provided by a

salt bridge between GluA319 and AspB335. GluA321 is

hydrogen bonded to a water molecule. In conformation 2, the

main-chain rotates to occupy the empty ¯avin mononucleo-

tide-binding cavity. Fig. 10 depicts the ¯avin mononucleotide

from the enzyme rubredoxin oxygen:oxidoreductase super-

imposed onto the corresponding residues of its binding site in

TM0755. The side chain of TyrA318 rests in the hydrophobic

pocket. Ramachandran analysis (Lovell et al., 2003) of the

®nal re®ned model showed that the dihedral angles of both

conformations are all in favored (>98%) or allowed (>99.8%)

regions. Real-space correlation coef®cients for residues A316±

A323 of the ®nal re®ned model are listed in Table 7. The Rfree

value for the ®nal model with both conformations present is

0.183, compared with 0.189 when conformation 1 is omitted

and 0.187 when 2 is omitted.
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Table 6
RMSD of ®tted fragments in molecule A of TM0542 and corresponding
regions in the manually built structure.

Gap Length
Secondary
structure

aaRMSD (AÊ )
(top score)

aaRMSD (AÊ )
(lowest)

134±142 7 HHHHHHH 0.93 0.78
212±227 14 BS��SSGGGGG�HH 0.91 0.90
256±266 9 ES�SS�SHH 0.87 0.87
272±285 12 �SSEEEEEE�SS 1.15 1.15
318±324 5 HHHHH 0.72 0.72

Table 7
Main-chain (MC) and side-chain (SC) real-space correlation coef®cients
for residues A316±A323 of the ®nal re®ned model.

Side chains were added manually.

A316 A317 A318 A319 A320 A321 A322 A323

MC 0.97 0.92 0.95 0.91 0.87 0.94 0.94 0.97
SC 0.96 0.92 0.92 0.91 0.63 0.76 0.96 0.96



5. Conclusions
Existing model-building software sometimes fails to resolve

parts of a protein, resulting in an initial structure with gaps. In

this study, we present a two-stage approach to modeling

missing main-chain fragments, given the anchor points and an

electron-density map. IK techniques allowed us to enforce a

closure constraint to guide the loop to its ®nal positioning in

space, thus augmenting reduced information available in areas

of poor electron density. Experimental

results demonstrate that our approach

yields fragments in good agreement with

the ®nal re®ned structure, even at medium

to low resolution, for lengths up to 12±15

residues. Thus, our algorithm extends

automation of model building to areas of

weak or ambiguous electron density at

resolution levels beyond 2.5 AÊ .

Fitting a main-chain fragment into areas

of poor density is sensitive to residues being

¯ipped along the chain. An important

extension to the current algorithm is

therefore the ability to identify ¯ipped

residues. Although easy to detect and

correct manually once the fragment is built,

it requires an additional step of human

intervention before the model can be

submitted to re®nement. It is anticipated

that elementary heuristic techniques will

greatly reduce the occurrence of ¯ipped

residues. Similarly, incorporation of specia-

lized algorithms to identify and model

secondary-structure elements will enhance

the performance in building long �-helices.

In cases where the sequence has not been

assigned, fragments of various length could

be ®tted. Using an appropriate score, frag-

ments of correct length and conformation

could then be identi®ed.

Advances in all aspects of X-ray

crystallography, from protein expression to

data processing and instrumentation, are

leading to data sets of suf®ciently high

quality to distinguish alternative main-chain

conformations in mobile regions. In x4.3 we

have demonstrated that our method can be

extended to model alternative conforma-

tions, even at a resolution of 1.8 AÊ .

Inducing a probability measure on

conformation space from targeted sampling

of self-motion manifolds is another inter-

esting and exciting direction for future

research.

6. Software

This algorithm is actively being used in

structure determination at the JCSG and

work is under way to fully integrate it into

Xsolve, JCSG's automated data-processing

and structure-solution software suite. A

software package based on the algorithm
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Figure 10
The ¯avin mononucleotide from rubredoxin oxygen:oxidoreductase superimposed on the
corresponding residues of its binding site in TM0755. The C� trace of the ®nal re®ned
coordinates of TM0755 is shown in grey, conformation 1 is shown in green and conformation 2
in cyan.

Figure 9
The ®nal re®ned coordinates of residues A317±A321 of TM0755 are shown in an omit electron-
density map. A total of 33% of the ®nal fragments output by the algorithm converged to
conformation 1 (green), while another 25% adopted conformation 2 (cyan). The density is
contoured at 0.35�. The remaining residues of both fragments are omitted for clarity.

Figure 8
Residues A256±A267 of TM0542. The top-scoring fragment is shown in cyan and the
corresponding manually completed and re®ned fragment in green. The aaRMSD between the
two fragments is 0.87 AÊ . The fragment is largely correct, apart from residues A259 (serine) and
A260 (arginine) being ¯ipped. The 2mFo ÿ DFc electron-density map is shown contoured at
1.0�.



Xpleo is currently under development. It will be available for

download at http://smb.slac.stanford.edu/~vdbedem.

Test structures used in this work were solved and deposited

as part of the JCSG pipeline (http://www.jcsg.org). The
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